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Active nozzle control is used to improve the stability of a beam subject to forces induced by
fluid flow through attached pipes. The control system has a significant effect on the structural
stability, making both flutter and divergence type of instabilities possible. The stability analysis
is carried out using a state-variable approach based on a finite element formulation of the
structural dynamics. The simultaneous design of the control system and the beam shape
minimizing structural mass is performed using numerical optimization. The inclusion of the
control system in the optimization gives a considerable reduction of the structural mass but
results in an optimal design which is very sensitive to imperfections. Using a simple model of the
control system uncertainties, a more robust design is obtained by solving a modified optimiza-
tion problem. Throughout the study, the theoretical findings are verified by experiments.
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1. INTRODUCTION

IN RECENT YEARS, there has been significant interest in the use of active control to stabilize
flexible structures. This paper deals with the control and optimal design of a flexible
structure subject to nonconservative fluid-dynamic forces. While the system investigated is
somewhat simplistic, an important aeronautical application within this class of problems is
an aircraft wing subject to aerodynamic loads. The optimal design of an aircraft wing
typically involves minimization of structural mass subject to constraints on structural
stability (Kuttenkeuler & Ringertz 1998a), while active control typically involves flutter
suppression (Zhou et al. 1995). An appealing concept to be demonstrated in this paper is to
use the increased stability from an active control system to further reduce the structural
mass. Naturally, this leads to a formulation of the optimization problem where the
structural mass is minimized using both structural dimensions and control system para-
meters as design variables.

A flexible pipe conveying fluid has been used as a model problem for structures subject to
nonconservative forces in many studies. An extensive review on this subject is given by
Paidoussis & Li(1993). In particular, the problem of optimal design of pipes conveying fluid
has been studied by Langthjem (1996), Tanaka et al. (1993) and Borglund (1998). Examples
of work on active control of the same mechanical system are Yau et al. (1995) and Chen
& Jendrzejezyk (1985).

The purpose of the present paper is to illustrate integrated design optimization and
investigate what impact the inclusion of a control system may have on the properties of the
optimal design. The modified pipe-flow system investigated in Borglund (1998) serves as
a model problem. A linear state-variable formulation of the control theory is used for two
main reasons. First, the stability analysis is then identical to the case without control.
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Second, using the state-variable feedback gains as design variables provides simple calcu-
lations of the stability constraint function derivatives used in the optimization. Experi-
mental verification of predicted design improvements and properties of the optimal design
is emphasized.

2. THE MODEL PROBLEM

A schematic layout of the system is shown in Figure 1. A thin and slender beam is subject to
fluid-dynamic forces due to water flow in two attached circular tubes, aligned symmetrically
on each side. A cantilevered configuration hanging vertically downward is considered. It is
well known that a configuration such as this may become unstable in flutter at some critical
flow speed (Borglund 1998).

In a previous study (Borglund 1998), the beam-tube structure was found to be accurately
modelled by a flexible beam with centred flow, thus having the same dynamics as a canti-
levered pipe conveying fluid. In this study, the system is extended by including a nozzle
control system, clamped to the beam-tube structure at the downstream end. By properly
controlling the nozzles in parallel, the applied loads at the beam tip may stabilize the system
and increase the critical speed for a fixed design of the beam. Using the centered flow
approximation, the nozzle control system is considered as composed of two rigid pipes of
finite length. The first of these pipes represent the actual control system which is clamped to
the beam. The second represents the nozzles, modelled as a single pipe abruptly deflecting
the centred flow at the nozzle inlet.

2.1. EQUATION OF MOTION

The beam is modelled using a viscoelastic Kelvin—Voigt material model (Langthjem 1996)
with density p,, Young’s modulus E, and dynamic viscosity coefficient Ef. The beam

Figure 1. Schematic layout of the model problem.



INTEGRATED DESIGN OPTIMIZATION OF A BEAM 271

geometry is given by the length [, width h(z), and constant thickness d, giving an area-
moment of inertia I,(z) and mass per unit length m,(z). Using the same material model, the
tubes have the corresponding properties p,, E, and Ef, but have a fixed geometry with total
area-moment of inertia (with respect to the beam center axis) I, and total mass per unit
length m,. The tubes convey a fluid with total mass per unit length m, and flow speed u.

The control system has length [, and total mass M,, including the mass M/,
of the enclosed fluid. The distance from the beam end to the center of mass of the
control system is denoted a., and the corresponding distance for the enclosed fluid is
as. = 1./2 (see Figure 12 in the appendix). The corresponding quantities for the nozzle are /,,
M,, M, a, and a,, = 1,/2, where distances are measured from the nozzle inlet. The nozzle
deflects the fluid jet by an angle 6 and conveys the same amount of fluid as the tubes.
Summing up, the total mass attached to the downstream end of the beam structure is
M =M, + M,

Assuming atmospheric pressure at the beam end, the small amplitude motion of the beam
deflection w(z, t) around the trivial equilibrium configuration is governed by the linear
partial differential equation (Paidoussis & Li 1993)

mpw + (D*W")" + chw + 2mauw’ + (Dw")”

1
+yg {m,w’ — <j mydz + M>w”} + mpuPw” =0, (1)

z

where a dot denotes differentiation with respect to time ¢ and a prime denotes differentiation
with respect to z. The total mass per unit length of the beam structure is
my(z) = my(z) + m, + m, and g is the acceleration due to gravity. The total stiffness distribu-
tion is D(z) = EyI,(z) + E,I,, and D*(z) = Ef1,(z) + EfI, determines the total amount of
structural damping. The viscous damping is assumed proportional to the beam width,
determined by the viscous damping coefficient c.

Assuming small nozzle deflections, and neglecting dynamic forces from the nozzle motion
and rotary inertia and viscous damping of the control system, the boundary conditions of
the cantilevered configuration at z = 0 are simply

w=w =0, (2)

while the boundary conditions defining the transverse force and bending moment at z = [
are

(DW"Y + (D*W") + (M, + M)W + {M.a, + M, (. + a,)} W'
+ 2u(M e + M)W + g(M, + M)w' + mu?6 =0,
Dw" + D*W' + {M.a, + M,(l. + a,)} W + {M.aZ + M,(l. + a,)*} W'
+ 2u{My.as + My, (I, + ap) W + g{M.a, + M,(l. + a,)}w'
+ gM,a,0 + mu*l.0 = 0. (3)

This result is derived in the appendix using a distributed mass approach based on the
plug-flow approximation (Paidoussis & Li 1993) of the fluid-dynamic forces involved.
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2.2. NUMERICAL ANALYSIS

Using a symmetric and piecewise linear beam width, the equation of motion (1) with
boundary conditions (2) and (3) is discretized using Hermitian finite elements (Langthjem
1996). Denoting the nodal displacement vector w, the discretized equations of motion may
be written as

Mw + (D + uG)w + Kw — u?Qw = (p + u?q)0, 4)
where
D = §,K, + 6,K, + ¢,M,,
K =K, + K, + K,, (5)
Q=Q.—-Q,

and the parameters o, = E¥/E,, 0, = Ef/E, and ¢, = ¢/p,d have been introduced for
convenience. The total mass matrix M, the beam mass matrix M,, the beam and tube
stiffness matrices K, and K,, the gravity matrix K, and the conservative load matrix Q,
are all symmetric and positive definite, while the Coriolis (gyroscopic) matrix G and the
nonconservative load matrix Q, are nonsymmetric. The force vector p corresponds to the
gravity moment induced by the nozzle deflection, and q is the force vector corresponding to
the force and moment due to the deflection of the fluid jet.

Introducing the state vector z, the system matrix A and the input vector b according to

Wl 0 I b 0 ©)
Z = = =
W’ >M YK —-u’Q —M'D+uG)| M~ '(p + u’q))’
the discretized equations of motion (4) may be written in the state-variable form
Z = Az + b0. (7)

The dynamics of an actuator may be included by merging equation (7) with a state-variable
model of the actuator. This results in a new system in the same form but now the actuator
set-point 0(t) is the control variable. A standard actuator model to be used further on, is
given by the second-order model

0 4 20w00 + 030 = w30, (8)

which is easily rewritten in state-variable form. Essentially, w, and ¢ determine the speed
and damping of the servo response, respectively. Note that the system given by (6)
corresponds to the special case of an ideal actuator model 0(t) = ().

In this study, a simple output feedback control law (Stevens & Lewis 1992) is used to
improve the stability of the system. Given some measured outputs defined by y = Cz,
C being the output matrix, the control law is defined as the (positive) output feedback

0=k"y =k"Cz, 9)

where k is a vector of feedback gains. Including the actuator dynamics, this control law
yields the closed-loop system

z=Az+ b0 = (A +bk'C)z = Az, (10)
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where A = A + bk™C is the closed-loop system matrix. Solutions of equation (10) are
assumed to be on the form

z(t) = 7e™, (11)
which inserted in equation (10) gives the linear eigenvalue problem
(A — )z =0. (12)

The structure is considered stable for a given flow speed if all eigenvalues 1 have negative
real part. Further, the imaginary part of the eigenvalues is the (circular) frequency of
vibration of the corresponding eigenmode.

3. EXPERIMENTAL APPROACH

For a description of the experimental set-up generating the water flow, the reader is referred
to Borglund (1998). Essentially, the experimental procedures described in Borglund (1998)
were used with only minor modifications. This paper emphasizes the control system set-up,
schematically shown in Figure 2.

The nozzles are individually controlled by a personal computer (PC) using two high-
performance linear electric servos. The displacement of the beam tip, directly corresponding
to a state in the theoretical model, is measured by a triangulating optical (laser) displace-
ment sensor. The sensor measures the distance to an object with a specified resolution of
60 um within the range + 100 mm. The analog signal from the optical sensor is sampled by
a PC with a data acquisition (DAQ) board.

The output feedback control law was written in the LabVIEW software (Johnson 1994),
which enabled real-time adjustment of the feedback gain. Controlling the two servos in
parallel, the system provided a control-loop frequency of approximately 143 Hz. In the
theoretical analysis the system is considered time-continuous.

3.1. STRUCTURAL DESIGN AND MATERIAL PARAMETERS

The same structural design as described in Borglund (1998) was used with only a few
modifications. In the present study composite beams of two different nominal thicknesses d,,
were used. The glass/epoxy composite provided much higher accuracy in the thickness
distribution than the material used in Borglund (1998). The elastic properties of the
composite material were determined using a dynamic technique (Kuttenkeuler 1998). As in
the previous study (Borglund 1998), reinforced silicone rubber tubes with inner and outer
diameter 80 and 140 mm were used. The properties of the two different laminate-tube
configurations are given in Table 1.

Optical sensor PC with

o - DAQ board
Soo e P\ N
[

Figure 2. Schematic layout of the control system set-up.
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TasLE 1

Properties of the beam-tube configurations

Property Config. 1 Config. 2 Units
do 0-0010 0-0015 m
Db 1927 1900 kg/m3
01 1225 1225 kg/m?
E, 21-49 x 10° 23-08 x 10° N/m?
E, 543 x10° 543 x 106 N/m?
E¥ 722 x 107 2:37 x 107 N's/m?
E} 787 x 103 7-10 x 10° Ns/m?
¢ 0114 0114 kg/m?s

TaBLE 2

Properties of the nozzle control system

Property Value Units
M, 0-2690 kg
M, 0-0534 kg
M,. 0-0025 kg
My, 0-0035 kg

I, 0-0250 m
L, 0-0350 m
a. 0-0065 m
a, 0-0187 m

The viscoelastic properties of the materials were determined as described in Borglund
(1998) with the only difference that the optical sensor was used in the vibration tests. This
made vibration tests with very small amplitudes possible, hence the somewhat different
values of the damping parameters compared with the values given in Borglund (1998). The
density of the water was assumed to be p, = 1000 kg/m? and the acceleration due to gravity
g =9-81 m/s?.

The nozzle control mechanism was manufactured in aluminium. The main part of the
nozzles is a short aluminium pipe, bending the tube going through the nozzle control
system, see Figure 1. In the theoretical model, the fluid jet is assumed to be abruptly
deflected at the axis of rotation of the nozzle. Consequently, this axis defines the theoretical
position of the nozzle inlet. The servo control wires, not included in the theoretical model,
were drawn along the tubes. The experimentally determined properties of the nozzle control
system is given in Table 2.

3.2. CONTROL SYSTEM VALIDATION

After a static calibration of the servo-nozzle mechanism, the parameters in the actuator
model, equation (8), were determined by a least-squares fit to experimental data for a step
response of magnitude A0 = 0-01 rad. The values ¢ = 0763 and w, = 173-5s~ ' were
obtained. The nozzle control system was attached to a uniform beam structure with length
[ = 1-045 m, constant width & = 0-15 m and average thickness d = 1-05 mm, with properties

according to Configuration 1 in Table 1. The static force from a deflection of the fluid jets
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Figure 3. Critical speed versus feedback gain for the uniform beam.

was measured using an electronic force-gauge. For deflections ranging up to 0-2 rad, the
average deviation between the measurements and the theoretical prediction F = mfuzg was
only 3%. Thus, no correction in the model was made.

The control law used in the experiment is given by

g= ky, (13)

where y(t) is the displacement of the beam tip and k the constant feedback gain. Besides
being easily implemented in the experiment, the simplicity of this control law enables close
investigation of the impact of the control system on the stability and optimal design. The
theoretical prediction of the critical speed u, (m/s) for various feedback gain k (rad/m) is
shown by the solid line in Figure 3. The numerical analysis was carried out with 16 finite
elements.

Depending on the feedback gain, three different instability modes are possible, denoted A,
B and C in the figure. For the case without control (k = 0), the usual flutter mode (B) is
critical. If the feedback gain is reduced, the critical speed eventually falls discontinuously
when the mode transition from B to A takes place. Mode A is a divergence mode
with a shape similar to Euler’s first buckling mode (clamped-free boundary conditions).
For increasing k > 0 the critical speed eventually reaches a maximum, where a transition
to mode C occurs. Mode C corresponds to another divergence mode with a shape
resembling Euler’s third buckling mode (clamped-hinged boundary conditions). The
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Figure 4. Illustration of the different instability modes.

different instability modes are illustrated in Figure 4. In the illustration of the flutter mode
B, the solid lines correspond to rightward motion of the beam tip and the dashed lines
correspond to leftward motion.

Consequently, the maximum stabilizing effect is achieved at a feedback gain where
a transition from flutter to divergence occurs. This is in accordance with results in Sugiyama
et al. (1985), where it is concluded that the most stabilizing effect due to a spring support
may be obtained by finding the critical spring constant at which the transition of the
instability mechanism from flutter to divergence takes place.

Using the experimental methodology described in Borglund (1998), the critical speed was
experimentally determined for a set of different feedback gains, marked by dots in the graph
of Figure 3. The predicted instability modes were clearly observed. The critical speeds of the
divergence modes were easily determined due to a rather distinct divergence behaviour,
while the flutter mode was more difficult. Without control, flutter was initiated at the critical
speed of 11-9 m/s. The theoretical prediction is 11-:0 m/s, giving an error of 8%. The flutter
frequency was 1-6 Hz in the experiment and 1-4 Hz theoretically, a 13% error. For k < 0 the
flutter instability was distinct and extremely violent, which was not the case for k > 0. This
indicates a transition from a supercritical to a subcritical Hopf bifurcation (Langthjem
1996) at k = 0 due to the reversed control action.

For k > 0, small limit-cycle motion was observed for subcritical speeds higher than
the critical speed at k = 0. There are two probable reasons for this. First, a small play in the
nozzle mechanism was observed during the calibration process. The second reason is the
sampling dead-time in the control system. Both may result in a loss of asymptotic stability
in an inherently unstable system. It may be possible to analyse the effect of a lag in the
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control system on the stability, but this is considered to be beyond the scope of the present
paper. In obtaining the values of the critical speed presented in Figure 3, the limit-cycle
motion was not considered as an instability. It was still possible to approximately determine
the speed where flutter developed. The experimental maximum of the critical speed
was characterized by flutter breaking into divergence. Neglecting the limit-cycle motion,
the predicted instability modes were observed with an average error in the critical speed of
7% (excluding the point at the discontinuity). However, if the control system is to be used
for design purposes, a more accurate prediction of the most stabilizing gain would be
desirable.

The most likely reason for the observed offset between the theoretical and experimental
peaks in Figure 3 is a lag in the control system, i.e., an offset between the set-point for and
the predicted nozzle deflection. Among other sources, such as the sampling dead-time, the
small play in the nozzle mechanism was found to be dominating. The low value of
the optimal feedback gain means that the system is very sensitive to supporting forces at
the beam tip, which was also concluded in Sugiyama et al. (1985). This leads to small nozzle
deflections, which means that even a small play in the nozzle mechanism may have a large
impact on the dynamics. For a feedback gain k ~ 1 rad/m and a beam tip displacement
y = 0-01 m, a 0-003 rad play in the nozzle mechanism may result in a 30% deflection lag.
The given orders correspond to the optimal feedback gain, the amplitude of the limit cycle
and the observed play in the nozzle mechanism. Obviously, the control system is prone to
uncertainties that are difficult to include in the model. However, one may interpret the
characteristics in Figure 3 as being caused by an uncertainty in the feedback gain. This is
discussed further in Section 4.3.

4. OPTIMAL DESIGN

It is well known that the critical load of structures subject to nonconservative forces
may be a nonsmooth, possibly discontinuous, function of the design (Langthjem 1996;
Kuttenkeuler & Ringertz 1998a). By considering the feedback gain as a design variable, it is
obvious from Figure 3 that this holds for the present system. This means that the
optimization problem of maximizing the critical flow speed for a fixed amount of structural
mass (or volume) would not be well posed. Instead, the formulation of minimizing structural
mass at fixed critical flow speed is preferable, since the structural mass is a well-behaved
function of the design.

The problem of minimizing the beam structural mass m for a specified critical flow speed
u. is posed as the nonlinear programming problem

min m(x;) (14)
Reli(xju) <0, i=1..n; uel0,ul, (15)
;= x5, j=1..n, (16)

where /; are the eigenvalues obtained by solving the eigenvalue problem (12) and x; the
design variables. In the present work, beam nodal widths and feedback gains in the control
law (9) are the possible design variables.

It should be noted that the optimization problem defined by equations (14)—(16) is still
nonsmooth. The eigenvalues (and hence the stability constraint functions (15)) are con-
tinuous functions of the design variables, but may be nonsmooth when there are coalescing
eigenvalues (Seyranian 1993). However, if the eigenvalues are distinct at the solution, the



278 D. BORGLUND

L ah Lh

Figure 5. Investigated beams; the numbers on top refer to “Design 17, “Design 27, et sec.

problem may usually be solved using standard numerical optimization techniques. In this
study, the problem is solved using the method of moving asymptotes (MMA) developed by
Svanberg (1993). The derivatives of the constraint functions (15) exist provided that the
eigenvalues of equation (12) are distinct, and are derived as described in Haftka & Adelman
(1993).

4.1. OpTiIMAL DESIGN WITHOUT CONTROL ACTION

In the following, all beams considered have the properties according to Configuration 2 in
Table 1, and were manufactured from the same composite laminate in the experiment. The
reference for the design improvements is a uniform beam with length [ = 1-045 m, width
ho = 0-13 m and average thickness d = 1-:52 mm, shown as Design 1 in Figure 5.

The first optimal design problem considered is to find the beam width distribution, such
that the beam structural mass is minimized for the specified critical flow speed
u, = 14:2 m/s, which is the predicted critical speed of the uniform design. Note that the
nozzle control system is physically present but disabled (k = 0). This problem was treated in
detail in Borglund (1998) and the results are summarized as follows. The beam geometry is
divided into 30 finite elements of equal length and linearly varying width, giving 31 beam
nodal widths representing the design variables. The initial values h; = h, were used, and the
stability constraints were only enforced for the flow speed u = 14-2 m/s. Using two different
sets of lower bounds on the beam width h; = 0-05 m and h; = 0-03 m, the optimal design
shown as Design 2 and 3 in Figure 5 are obtamed To 51mp11fy the attachment of the control
system, the minimum width of the beam tip is 0-05 m in both cases. The optimization
problem was solved in approximately 30 iterations, giving a maximum residual in the
design variables of less than 10~ (m).

The theoretical results are compared with experiments in Table 3. The ratio between the
beam structural mass of the optimal design and the reference design is used as a measure of
the design improvements. Note that the optimization problems were solved using different
beam thicknesses, measured in the experiment. Good agreement between numerical
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TaBLE 3

Properties of the investigated beams and comparison with experiments

Design d h Mass ratio k* Upred Uexp Error
(mm) (m) (%) (rad/m) m/s) (m/s) (%)
1 1-52 — 100 — 142 144 1-4
2 1-54 0-05 76 — 14-2 14-4 14
3 1-55 0-03 71 — 142 147 35
4 1-55 0-05 48 1-28 142 13-0 88
5 1-53 0-03 31 1-23 145 12:5 15
6 1-55 0-03 39 1-45 149 > 150 —

predictions and experiments were achieved. All of the investigated beams (1-3) became
unstable in the flutter mode B described in Section 3.2, which was also predicted. The
deviation between the theoretical and the experimental flutter frequency was less than 10%
in all cases.

4.2. INTEGRATED OPTIMAL DESIGN

The problem stated in this section is to find both the beam width and the feedback gain in
the control law (13), such that the beam structural mass is minimized for the critical flow
speed u, = 142 m/s.

The same discretization, initial values and lower bounds on the beam nodal widths as in
the previous section were used. The initial value k = 0 was chosen for the feedback gain,
corresponding to an initially disabled control. No bounds were put on the gain. Solving the
optimal design problem with the same termination criteria for the iterations, Designs 4 and
5 in Figure 5 are obtained. To ensure stability of Design 5 for u € [0, u.], the stability
constraints were enforced for the set u = {12-5,126,...,14-2} m/s. The results from the
optimization are given in Table 3. The optimal feedback gain is denoted k*.

The inclusion of the control system in the optimization gives a significant reduction of the
beam structural mass. Design 5 has a total beam mass reduction of 69%! However, the
optimal beams were both experimentally unfeasible. If the optimal feedback gain were used
in the experiment, both Design 4 and 5 became unstable in flutter at a lower speed than the
specified 14-2 m/s. The reasons for this is explained in the following.

In Figure 6 the critical speed for varying feedback gain is shown for Design 4 in the same
manner as in Section 3.2. A more thorough experimental investigation reveals that the lag in
the control system is the reason for the unfeasibility. This is clearly observed in Figure 6,
where the experiment corresponding to the optimal feedback gain is marked by “V”. The
optimal design is characterized by a multiple bifurcation where the flutter mode B and the
divergence mode C becomes critical simultaneously. This is visualized in Figure 7 by
plotting the real part of the relevant eigenvalues (the relevant stability constraint functions)
versus the flow speed for the optimal feedback gain. The flutter mode B is readily followed
to instability at u = 14-2 m/s. The divergence mode C appears when the complex conjugate
eigenvalues corresponding to a flutter mode coalesce and form a new pair of real eigen-
values. This is known as strong interaction between two eigenvalues (Seyranian 1993). For
beams 1-3, without control action, no interaction occurs before the flutter mode B becomes
unstable. Finally, modes B and C become critical simultancously at the specified critical
speed, marked by “0” in the figure. Note that the critical eigenvalues are still distinct, since
they are separated in frequency.
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Figure 6. Critical speed versus feedback gain for Design 4.

The behaviour of Design 5 is more complicated. The corresponding plots are shown in
Figures 8 and 9. In Figure 9 it is observed that mode C is critical at u ~ 12:8 m/s but is
stabilized again for increasing u. The same thing happens for mode B at u =~ 13:6 m/s. In
between these speeds, the two real eigenvalues coincide and a flutter mode reappears (mode
D in the figure). Instability does not occur until this mode becomes critical at u = 14-5 m/s.
This means that none of the stability constraints are active at the specified critical speed
14-2 m/s (marked by “o0” as before), which is certainly an interesting feature of this design.

The scenario described above explains the characteristics in Figure 8. At k = k* instabil-
ity occurs at 14:5 m/s in mode D, marked by ‘«’ in the plot. If the feedback gain is perturbed
according to k = k* + Ak, Ak > 0, the critical speed drops discontinuously to 12-8 m/s due
to a transition to the divergence mode C. In the same manner, a perturbation k = k* — Ak
results in a transition to the flutter mode B, and the critical speed drops to 13-6 m/s.
Consequently, the optimal design is extremely sensitive to uncertainty in the feedback gain.
Imperfections in the structural design will have the same effect.

With the above findings in mind, the poor performance of Design 5 in the experiment is
not surprising. A small lag in the control system results in a severe drop in critical speed due
to the sensitivity of the optimal design. Somewhat surprisingly though, it was possible to
find a feedback gain in the experiment where it was difficult to distinguish between the
predicted instability modes and the limit-cycle motion described in Section 3.2. At this gain
it was possible to increase the flow speed to 15 m/s, which was the maximum speed provided
by the experimental set-up. This speed is marked by “<” in Figure 8 and does not
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Figure 7. Stability constraint functions versus flow speed for Design 4.
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Figure 8. Critical speed versus feedback gain for Design 5.
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Figure 9. Stability constraint functions versus flow speed for Design 5.

correspond to instability. At this speed the structure was very well behaved, and strong
perturbations were damped out within a few cycles. This verifies that modes B and C are
stabilized as predicted. If the control system was shut off, the structure responded like
a whiplash.

If the ideal actuator model 0(r) = 0(¢) is used in the prediction of the critical speed, mode
D becomes critical on a finite interval of width Ak ~ 0-1 rad/m due to the increased actuator
efficiency. This indicates that the actuator dynamics has impact on the design, and also
implies that an experimentally unfeasible design may result if the ideal model is used in the
optimization.

4.3. INTEGRATED OPTIMAL DESIGN CONSIDERING CONTROL UNCERTAINTY

As mentioned at the end of Section 3.2, one may interpret the lag characteristics in
Figures 3, 6 and 8 as being caused by an uncertainty in the feedback gain corresponding to
a systematic use of too low a gain in the experiment. In the following, this is assumed to be
the only uncertainty in the system, which is a reasonable assumption considering the results
for the case without control (see Section 4.1). One would thus like to obtain an optimal
design persistent to perturbations of the kind k = k* — Ak, where Ak > 0 is a (possibly
large) prescribed uncertainty in the feedback gain.

It is realized that if the flutter mode B in Figures 7 and 9 would have a margin to
instability for all speeds u € [0, u.], the structure would be stable for some interval
[k* — Ak, k*] of the feedback gain. This means that a design with the desired property may
be obtained by enforcing a stability margin on mode B in the optimization. More generally,
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this modified optimization problem may be written in the form

min m(x;) (17)
ﬂéii(Xj, u)+5lS0, i= 1...”}., ME[O, uC], (18)
XjZEj, j:1...nx, (19)

where §; is the stability margin corresponding to mode i. This formulation is used for
example by Kuttenkeuler & Ringertz (1998b), where it is also noted that finding the proper
stability margins is not a trivial task.

For this small problem though, where uncertainty in only one parameter is considered,
a sufficient stability margin is found by inspection as follows. By enforcing a stability margin
on mode B of 6 = 0-75 s~ ! but otherwise using the problem formulation for Design 5, the
optimal Design 6 in Figure 5 is obtained. The specified stability margin is readily verified in
Figure 11. As for Design 5, none of the stability constraints are active at the specified critical
speed 142 m/s, and instability (in mode D) does not occur until 149 m/s. In this case
though, mode D is critical on a finite interval of the feedback gain, see Figure 10. By
inspection, the structure is feasible for k € [k* — Ak, k*], where Ak ~ 0-4 rad/m covers the
peak offsets observed in Figures 6 and 8. Hence, the modified design is expected to be
experimentally feasible. As shown in Figure 10, the structure was found to be well behaved
(see Section 4.2) for the optimal feedback gain. Further, this behaviour was observed for

16 T T T T T T

Figure 10. Critical speed versus feedback gain for Design 6.
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Figure 11. Stability constraint functions versus flow speed for Design 6.

a finite interval of the feedback gain of approximately the predicted width. Unfortunately,
the flow speed could not be increased high enough to verify the predicted flutter instability
(mode D).

As presented in Table 3, the robust optimal design still has 61% less structural mass than
the reference design. Hence, at the cost of a moderate increase in structural mass, a robust
design with significantly improved performance is obtained by enforcing a stability margin

in the optimization.

5. CONCLUSIONS AND DISCUSSION

Linear pipe-flow theory was found very capable of predicting the effect of active nozzle
control on the stability of a flexible beam-tube structure. A simple proportional feedback
gave rise to instability modes not present in the uncontrolled system, and the greatest
stabilizing effect was achieved for a feedback gain at which a transition from flutter to
divergence took place.

The inclusion of the control system in the design optimization gave a significant
reduction of the beam structural mass and also introduced a new instability mode. The new
flutter mode enabled an optimal design with the interesting feature of being damped at the
minimum critical speed specified in the optimization. However, the integrated optimal
design was found to be very sensitive to imperfections and, consequently, the predicted

performance could not be experimentally verified.
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The main uncertainty in the system was a lag in the control system caused by a small
play in the nozzle mechanism. By interpreting the lag as an uncertainty in the feedback
gain, it was possible to obtain an experimentally feasible design by solving a modified
optimization problem. The robust optimal design had approximately half the mass
of an optimal design without control. In addition, it had a superior behaviour at
the specified minimum critical speed, where it showed a significant persistence to
strong perturbations. As stated in Kuttenkeuler & Ringertz (1998b), the modified formula-
tion (17)—(19) is by no means the best way to achieve a robust optimal design, but the
usefulness of an optimization formulation taking uncertainties into account was clearly
demonstrated.

The present study has shown that significant improvements is possible using integrated
design optimization. However, to achieve a performance that can be realized in practice,
care must be taken in formulating the optimization problem. It would of course be possible
to further increase the performance using a more advanced control law. However, such
an improvement would most likely introduce additional uncertainties, which further neces-
sitates the use of a robust optimization. Nevertheless, the present study has shown that
by use of optimization techniques, even the simplest control system may have good
performance.
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APPENDIX: DERIVATION OF BOUNDARY CONDITIONS

The transverse force and bending moment applied to the beam tip is most simply derived by
considering the nozzle control system as an extension of the beam-tube structure, modelled as two
articulated rigid pipes as shown in Figure 12. Assuming small amplitude motion, this means that the
force per unit length

I+1+1,

f=mw + 2mauw’ + g <m,w’ — J

m;dz w”) + mautw” (A1)
has to be applied to achieve a motion w(z, t) of the pipes. As before, m;(z) is the total mass per unit
length of the structure. Also note that the viscous damping force is neglected.
Using the local length coordinate £ =z — | and the geometry defined in the figure, the linear
approximation of the displacement along the pipes is

wi(t) + wit) &, 0<¢<l,

wia ) = {wl(o FWOE +00E —1), L<E<l 40 (A2)

where w;(t) and wj(¢) is the displacement and rotation of the beam at z = I. Inserting equation (A2) in
equation (A1) and integrating for the total force T = [*" f(£)d¢ and moment Mg = [c*™ f(£)&dE

W

w;

Figure 12. Schematic layout of the nozzle control system.
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applied to the control system at ¢ = 0 yields
To = (M. + M)V + {Mca. + M, (I + a,)} Wi + 2u(My. + M)W
+ g(M, + My)wj + M,a,0 + 2uM 0 + mu?0,
Mo = {M.ac + M,(l + a)} o + {(Mca? + J) + (Mu(le + a,)® + Jo)}iig (A3)
+ 2u{Mj.az. + Mp,(l. + ap)} Wi + g{M.a. + M,(l. + a,)}wi
+ (Ma,(l. + a,) + J,} 0 + 2uMy, (. + a;)0 + gM,a,0 + muL0,

with notation as defined in Section 2.1, except for the rotary inertia J, and J, of the control system and
nozzle. Finally, a force and moment balance at z = [ give the boundary conditions for the beam-tube
structure. . .

For the problem at hand, the dynamic forces proportional to 6 and 6 are at least one order of
magnitude smaller than the static force proportional to 6, and are neglected. Further, rotary inertia of
the control system and nozzle is neglected. Using these approximations, boundary conditions (3) are
obtained.
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